Programming Ocean Academy

Deep Belief Network AI Architecture

Understand the intricate workings of Capsule Networks in an interactive and visually appealing way.

Deep Belief Network AI Architecture

How Deep Belief Networks Work

  • Input Layer: Receives raw data (e.g., images, numerical features, or text) and feeds it to the first Restricted Boltzmann Machine (RBM).
  • First RBM (Input to Hidden Layer): - Learns to model the probability distribution of the input data. - Activates hidden nodes based on learned patterns in the visible layer.
  • Subsequent RBMs (Stacked Hidden Layers): - Each RBM receives input from the hidden layer of the previous RBM. - Progressively learns more abstract and hierarchical representations of the data.
  • Fine-Tuning: - After pretraining, the entire network is fine-tuned using supervised backpropagation to minimize the error between predicted and actual outputs.
  • Probabilistic Modeling: - Models the relationships between nodes probabilistically, capturing patterns and dependencies in the data.
  • Output Layer: - Produces predictions or classifications by mapping the final abstract representation to the output.
  • Applications: - Dimensionality reduction. - Feature extraction. - Image recognition. - Time-series forecasting. - Data reconstruction.

DBN Code Example

Here's how we can define a Deep Belief Network (DBN) architecture:


import tensorflow as tf
from tensorflow.keras import layers, models

# Define Restricted Boltzmann Machine (RBM) Layer
class RBMLayer(layers.Layer):
    def __init__(self, num_hidden_units, **kwargs):
        super(RBMLayer, self).__init__(**kwargs)
        self.num_hidden_units = num_hidden_units

    def build(self, input_shape):
        self.num_visible_units = input_shape[-1]
        self.W = self.add_weight(
            shape=(self.num_visible_units, self.num_hidden_units),
            initializer="glorot_uniform",
            trainable=True
        )
        self.h_bias = self.add_weight(
            shape=(self.num_hidden_units,),
            initializer="zeros",
            trainable=True
        )
        self.v_bias = self.add_weight(
            shape=(self.num_visible_units,),
            initializer="zeros",
            trainable=True
        )

    def call(self, inputs):
        # Forward pass: visible to hidden probabilities
        hidden_probabilities = tf.nn.sigmoid(tf.matmul(inputs, self.W) + self.h_bias)
        return hidden_probabilities

# Define Deep Belief Network (DBN) Model
def build_dbn():
    model = models.Sequential([
        layers.Input(shape=(784,)),  # Input Layer (Flattened image)
        RBMLayer(512),  # RBM Layer 1
        RBMLayer(256),  # RBM Layer 2
        RBMLayer(128),  # RBM Layer 3
        layers.Dense(10, activation="softmax")  # Output Layer
    ])
    return model

# Instantiate the DBN Model
dbn_model = build_dbn()