How Deep Belief Networks Work
- Input Layer: Receives raw data (e.g., images, numerical features, or text) and feeds it to the first Restricted Boltzmann Machine (RBM).
- First RBM (Input to Hidden Layer): - Learns to model the probability distribution of the input data. - Activates hidden nodes based on learned patterns in the visible layer.
- Subsequent RBMs (Stacked Hidden Layers): - Each RBM receives input from the hidden layer of the previous RBM. - Progressively learns more abstract and hierarchical representations of the data.
- Fine-Tuning: - After pretraining, the entire network is fine-tuned using supervised backpropagation to minimize the error between predicted and actual outputs.
- Probabilistic Modeling: - Models the relationships between nodes probabilistically, capturing patterns and dependencies in the data.
- Output Layer: - Produces predictions or classifications by mapping the final abstract representation to the output.
- Applications: - Dimensionality reduction. - Feature extraction. - Image recognition. - Time-series forecasting. - Data reconstruction.
DBN Code Example
Here's how we can define a Deep Belief Network (DBN) architecture:
import tensorflow as tf
from tensorflow.keras import layers, models
# Define Restricted Boltzmann Machine (RBM) Layer
class RBMLayer(layers.Layer):
def __init__(self, num_hidden_units, **kwargs):
super(RBMLayer, self).__init__(**kwargs)
self.num_hidden_units = num_hidden_units
def build(self, input_shape):
self.num_visible_units = input_shape[-1]
self.W = self.add_weight(
shape=(self.num_visible_units, self.num_hidden_units),
initializer="glorot_uniform",
trainable=True
)
self.h_bias = self.add_weight(
shape=(self.num_hidden_units,),
initializer="zeros",
trainable=True
)
self.v_bias = self.add_weight(
shape=(self.num_visible_units,),
initializer="zeros",
trainable=True
)
def call(self, inputs):
# Forward pass: visible to hidden probabilities
hidden_probabilities = tf.nn.sigmoid(tf.matmul(inputs, self.W) + self.h_bias)
return hidden_probabilities
# Define Deep Belief Network (DBN) Model
def build_dbn():
model = models.Sequential([
layers.Input(shape=(784,)), # Input Layer (Flattened image)
RBMLayer(512), # RBM Layer 1
RBMLayer(256), # RBM Layer 2
RBMLayer(128), # RBM Layer 3
layers.Dense(10, activation="softmax") # Output Layer
])
return model
# Instantiate the DBN Model
dbn_model = build_dbn()